Electrosprayed Environment-Friendly Dry Triode-Like Facial Masks for Skincare.
Kaisong HuangYifan SiHanbai WuYuhan ChenShuai ZhangShuo ShiChunxia GuoJinlian HuPublished in: ACS applied materials & interfaces (2023)
The cosmetics industry has a worrying impact on the environment, including the plastics used in products and packaging and environmentally unfriendly additives. In this study, we present an environment-friendly triode-like facial mask (TFM) that utilizes only green and degradable raw materials, nontoxic and harmless solvents, and electric energy to achieve distinct switchable directional water transport properties, avoids a wet storage environment, and reduces excessive packaging. The TFM demonstrates droplet stability when not in contact with the skin while facilitating rapid liquid transfer (15 μL) within durations of 2.8 s (dry skin) and 1.9 s (moist skin) upon contact. We elucidate the underlying mechanism behind this triode-like behavior, emphasizing the synergistic interaction of the wettability gradient, Gibbs pinning, and additional circumferential capillary force. Moreover, the TFM exhibits a reduction in the proportion of aging cells, decreasing from 44.33 to 13.75%, while simultaneously providing antibacterial and skin-beautifying effects. The TFM brings a novel experience while also holding the potential to reduce environmental pollution in the production, packaging, use, and recycling of cosmetics products.