Login / Signup

Macropinocytosis Is the Principal Uptake Mechanism of Antigen-Presenting Cells for Allergen-Specific Virus-like Nanoparticles.

Armin KrausBernhard KratzerAl Nasar Ahmed SehgalDoris TrapinMatarr KhanNicole BoucheronWinfried F Pickl
Published in: Vaccines (2024)
Virus-like nanoparticles (VNP) are regarded as efficient vaccination platforms and have proven to be useful for the non-anaphylactogenic delivery of allergen-specific immunotherapy in preclinical models previously. Herein, we sought to determine the mode of VNP uptake by antigen presenting cells (APC). Accordingly, we screened a collection of substances known to inhibit different uptake pathways by APC. The human leukemia monocytic cell line THP-1 and the murine dendritic cell line DC 2.4 were examined for the uptake of fluorescently labelled VNP in the presence or absence of inhibitors. The inhibitory effect of candidate substances that blocked VNP uptake in APC lines was subsequently evaluated in studies with primary APC present in splenocyte and lung cell homogenates in vitro and upon intratracheal application of VNP in vivo. The uptake of allergen-specific VNP in vitro and in vivo was mainly observed by macrophages and CD103 + dendritic cells and was sensitive to inhibitors that block macropinocytosis, such as hyperosmolarity induced by sucrose or the polyphenol compound Rottlerin at low micromolar concentrations but not by other inhibitors. Also, T-cell proliferation induced by allergen-specific VNP was significantly reduced by both substances. In contrast, substances that stimulate macropinocytosis, such as Heparin and phorbol myristate acetate (PMA), increased VNP-uptake and may, thus, help modulate allergen-specific T-cell responses. We have identified macropinocytosis as the principal uptake mechanism of APC for allergen-specific VNP in vitro and in vivo, paving the way for further improvement of VNP-based therapies, especially those that can be used for tolerance induction in allergy, in the future.
Keyphrases
  • dendritic cells
  • induced apoptosis
  • drinking water
  • magnetic resonance
  • endothelial cells
  • case report
  • cell therapy
  • cell cycle arrest
  • immune response
  • bone marrow
  • single cell
  • signaling pathway
  • current status