Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity.
Yuquan WangLanlan LiWeibo ZhaoYin DouHuijie AnHui TaoXiaoqiu XuYi JiaShan LuJianxiang ZhangHouyuan HuPublished in: ACS nano (2018)
Atherosclerosis is a leading cause of vascular diseases worldwide. Whereas antioxidative therapy has been considered promising for the treatment of atherosclerosis in view of a critical role of reactive oxygen species (ROS) in the pathogenesis of atherosclerosis, currently available antioxidants showed considerably limited clinical outcomes. Herein, we hypothesize that a broad-spectrum ROS-scavenging nanoparticle can serve as an effective therapy for atherosclerosis, taking advantage of its antioxidative stress activity and targeting effects. As a proof of concept, a broad-spectrum ROS-eliminating material was synthesized by covalently conjugating a superoxide dismutase mimetic agent Tempol and a hydrogen-peroxide-eliminating compound of phenylboronic acid pinacol ester onto a cyclic polysaccharide β-cyclodextrin (abbreviated as TPCD). TPCD could be easily processed into a nanoparticle (TPCD NP). The obtained nanotherapy TPCD NP could be efficiently and rapidly internalized by macrophages and vascular smooth muscle cells (VSMCs). TPCD NPs significantly attenuated ROS-induced inflammation and cell apoptosis in macrophages, by eliminating overproduced intracellular ROS. Also, TPCD NPs effectively inhibited foam cell formation in macrophages and VSMCs by decreasing internalization of oxidized low-density lipoprotein. After intravenous (i.v.) administration, TPCD NPs accumulated in atherosclerotic lesions of apolipoprotein E-deficient (ApoE-/-) mice by passive targeting through the dysfunctional endothelium and translocation via inflammatory cells. TPCD NPs significantly inhibited the development of atherosclerosis in ApoE-/- mice after i.v. delivery. More importantly, therapy with TPCD NPs afforded stabilized plaques with less cholesterol crystals, a smaller necrotic core, thicker fibrous cap, and lower macrophages and matrix metalloproteinase-9, compared with those treated with control drugs previously developed for antiatherosclerosis. The therapeutic benefits of TPCD NPs mainly resulted from reduced systemic and local oxidative stress and inflammation as well as decreased inflammatory cell infiltration in atherosclerotic plaques. Preliminary in vivo tests implied that TPCD NPs were safe after long-term treatment via i.v. injection. Consequently, TPCD NPs can be developed as a potential antiatherosclerotic nanotherapy.
Keyphrases
- reactive oxygen species
- oxidative stress
- hydrogen peroxide
- oxide nanoparticles
- vascular smooth muscle cells
- low density lipoprotein
- cardiovascular disease
- dna damage
- cell death
- induced apoptosis
- diabetic rats
- nitric oxide
- single cell
- high fat diet
- cell cycle arrest
- angiotensin ii
- cell proliferation
- drug delivery
- ionic liquid
- adipose tissue
- drug induced
- insulin resistance
- wild type
- mild cognitive impairment
- mesenchymal stem cells