Communicability Characterization of Structural DWI Subcortical Networks in Alzheimer's Disease.
Eufemia LellaNicola AmorosoDomenico DiaconoAngela LombardiTommaso MaggipintoAlfonso MonacoRoberto BellottiSabina TangaroPublished in: Entropy (Basel, Switzerland) (2019)
In this paper, we investigate the connectivity alterations of the subcortical brain network due to Alzheimer's disease (AD). Mostly, the literature investigated AD connectivity abnormalities at the whole brain level or at the cortex level, while very few studies focused on the sub-network composed only by the subcortical regions, especially using diffusion-weighted imaging (DWI) data. In this work, we examine a mixed cohort including 46 healthy controls (HC) and 40 AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set. We reconstruct the brain connectome through the use of state of the art tractography algorithms and we propose a method based on graph communicability to enhance the information content of subcortical brain regions in discriminating AD. We develop a classification framework, achieving 77% of area under the receiver operating characteristic (ROC) curve in the binary discrimination AD vs. HC only using a 12 × 12 subcortical features matrix. We find some interesting AD-related connectivity patterns highlighting that subcortical regions tend to increase their communicability through cortical regions to compensate the physical connectivity reduction between them due to AD. This study also suggests that AD connectivity alterations mostly regard the inter-connectivity between subcortical and cortical regions rather than the intra-subcortical connectivity.
Keyphrases
- white matter
- resting state
- multiple sclerosis
- functional connectivity
- diffusion weighted imaging
- machine learning
- cognitive decline
- deep learning
- electronic health record
- healthcare
- newly diagnosed
- physical activity
- mass spectrometry
- social media
- chronic kidney disease
- computed tomography
- health information
- data analysis
- atomic force microscopy
- drug induced
- network analysis