Evolutionary learning of adaptation to varying environments through a transgenerational feedback.
BingKan XueStanislas LeiblerPublished in: Proceedings of the National Academy of Sciences of the United States of America (2016)
Organisms can adapt to a randomly varying environment by creating phenotypic diversity in their population, a phenomenon often referred to as "bet hedging." The favorable level of phenotypic diversity depends on the statistics of environmental variations over timescales of many generations. Could organisms gather such long-term environmental information to adjust their phenotypic diversity? We show that this process can be achieved through a simple and general learning mechanism based on a transgenerational feedback: The phenotype of the parent is progressively reinforced in the distribution of phenotypes among the offspring. The molecular basis of this learning mechanism could be searched for in model organisms showing epigenetic inheritance.