Influence of the Abiotic Elicitors Ag Salts of Aspartic Acid Derivatives, Self-Organized in Nanofibers with Monomeric and Dimeric Molecular Structures, on the Antioxidant Activity and Stevioside Content in Micropropagated Stevia rebaudiana Bert.
Mariana SichanovaMaria GenevaMaria PetrovaKamelia Miladinova-GeorgievaElisaveta KirovaTrendafil NedevDaniela S TsekovaViktoria IvanovaAntoaneta TrendafilovaPublished in: Plants (Basel, Switzerland) (2023)
The use of nanomaterials in biotechnology for the in vitro propagation of medical plants and the accumulation of certain biologically active metabolites is becoming an efficient strategy. This study aimed to evaluate the influence of the concentration (0, 1, 10, 50, and 100 mg L -1 ) of two types of nanofibers on the growth characteristics, the antioxidant status, and the production of steviol glycosides in micropropagated Stevia rebaudiana Bert. plantlets. The nanofibers were synthesized by aspartic acid derivatives (L-Asp) Ag salts self-organized into nanofibers with two different molecular structures: monomeric, containing one residue of L-Asp with one hydrophilic head which bonds one Ag ion (NF1-Ag salt); and dimeric, containing two residues of L-Asp with two hydrophilic heads which bond two Ag ions (NF2-Ag salt). An increase in the shoots from the explants' number and length, biomass accumulation, and micropropagation rate was achieved in the plants treated with the NF1-Ag salt in concentrations from 1 to 50 mg L -1 after 30 days of in vitro proliferation compared to the NF2-Ag salt. In contrast, the plants grown on MS media supplemented with NF2-Ag salt exhibited an increase in the level of stevioside, rebaudioside A, and mono- (CQA) and dicaffeoylquinic (DCQA) acids as compared to the NF1-Ag salt.