Login / Signup

ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H2 Evolution in Water.

Moritz F KuehnelCharles E CreissenConstantin D SahmDominik WielendAnja SchlosserKatherine L OrchardErwin Reisner
Published in: Angewandte Chemie (International ed. in English) (2019)
A precious-metal- and Cd-free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd-based quantum dots is presented. Rod-shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4 )2 co-catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol H 2  gZnSe -1  h-1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm-2 , λ>400 nm). Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm-2 ), up to 149±22 mmol H 2  gZnSe -1  h-1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co-catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around -10 μA cm-2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state-of-the-art light absorber for photocatalytic and photoelectrochemical H2 generation.
Keyphrases
  • visible light
  • quantum dots
  • ionic liquid
  • energy transfer
  • sensitive detection
  • room temperature
  • photodynamic therapy
  • molecular dynamics
  • radiation therapy
  • radiation induced
  • electron transfer