Login / Signup

Transesterification of Dimethyl Carbonate with Ethanol Catalyzed by Guanidine: A Theoretical Analysis.

Sina GilassiSerge Kaliaguine
Published in: The Journal of organic chemistry (2024)
Density-functional theory (DFT) was performed to investigate the mechanistic features of different guanidine-based catalysts, namely, 1,1,3,3-tetramethyl guanidine (TMG) and 1,5,7-triaza-bicyclo-[4.4.0]dec-5-ene (TBD), for the transesterification reaction of dimethyl carbonate (DMC) with ethanol (EtOH). Different possible pathways were suggested in which these catalysts act as either nucleophile or base within a homogeneous system. The DFT results allowed not only the study of the thermochemistry aspects of all elementary reactions featured in the two different activation modes but also the accurate calculation of the free energy barriers for each case. Our findings showed that the catalyzed reaction proceeded through simultaneous activation of DMC and EtOH, facilitated by hydrogen bonding for both catalysts. This feature led to the formation of a stable intermediate with a relatively low free energy barrier. TBD exhibited a potentially more efficient mechanism, owing to its planar structure and dual-activation mode. The free energy barrier of the rate-limiting step, identified as the formation of a zwitterionic complex, then declined by approximately 50% when compared with the reaction without catalysts. Overall, the DFT approach provides good insight into the reactivity of both catalysts and helps to find possibilities for further enhancing the mechanistic features of both catalysts for this type of transesterification reaction.
Keyphrases
  • density functional theory
  • highly efficient
  • transition metal
  • molecular dynamics
  • metal organic framework
  • molecular docking
  • machine learning
  • room temperature
  • deep learning
  • ionic liquid