Prediction of Histologic Neoadjuvant Chemotherapy Response in Osteosarcoma Using Pretherapeutic MRI Radiomics.
Amine BouhamamaBenjamin LeporqWassef KhaledAngéline NemethMehdi BrahmiJulie DufauPerrine Marec-BérardJean-Luc DrapéFrançois GouinAxelle Bertrand-VasseurJean-Yves BlayOlivier BeufFrank PilleulPublished in: Radiology. Imaging cancer (2022)
Histologic response to chemotherapy for osteosarcoma is one of the most important prognostic factors for survival, but assessment occurs after surgery. Although tumor imaging is used for surgical planning and follow-up, it lacks predictive value. Therefore, a radiomics model was developed to predict the response to neoadjuvant chemotherapy based on pretreatment T1-weighted contrast-enhanced MRI. A total of 176 patients (median age, 20 years [range, 5-71 years]; 107 male patients) with osteosarcoma treated with neoadjuvant chemotherapy and surgery between January 2007 and December 2018 in three different centers in France (Centre Léon Bérard in Lyon, Centre Hospitalier Universitaire de Nantes in Nantes, and Hôpital Cochin in Paris) were retrospectively analyzed. Various models were trained from different configurations of the data sets. Two different methods of feature selection were tested with and without ComBat harmonization (ReliefF and t test) to select the most relevant features, and two different classifiers were used to build the models (an artificial neural network and a support vector machine). Sixteen radiomics models were built using the different combinations of feature selection and classifier applied on the various data sets. The most predictive model had an area under the receiver operating characteristic curve of 0.95, a sensitivity of 91%, and a specificity 92% in the training set; respective values in the validation set were 0.97, 91%, and 92%. In conclusion, MRI-based radiomics may be useful to stratify patients receiving neoadjuvant chemotherapy for osteosarcomas. Keywords: MRI, Skeletal-Axial, Oncology, Radiomics, Osteosarcoma, Pediatrics Supplemental material is available for this article. © RSNA, 2022.
Keyphrases
- neoadjuvant chemotherapy
- contrast enhanced
- locally advanced
- prognostic factors
- diffusion weighted
- magnetic resonance imaging
- magnetic resonance
- computed tomography
- neural network
- lymph node
- diffusion weighted imaging
- sentinel lymph node
- rectal cancer
- squamous cell carcinoma
- deep learning
- machine learning
- newly diagnosed
- radiation therapy
- high resolution
- end stage renal disease
- minimally invasive
- palliative care
- lymph node metastasis
- mass spectrometry
- dual energy
- patient reported outcomes
- coronary artery disease
- percutaneous coronary intervention
- virtual reality
- body composition
- free survival