Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating.
Junbiao PengJinglin WeiZhennan ZhuHonglong NingWei CaiKuankuan LuRihui YaoHong TaoYanqiong ZhengXubing LuPublished in: Nanomaterials (Basel, Switzerland) (2017)
In this paper, an alumina-zirconia (Al₂O₃-ZrO₂) nanolaminate dielectric was fabricated by spin-coating and the performance was investigated. It was found that the properties of the dielectric can be adjusted by changing the content of Al₂O₃/ZrO₂ in nanolaminates: when the content of Al₂O₃ was higher than 50%, the properties of nanolaminates, such as the optical energy gap, dielectric strength (Vds), capacitance density, and relative permittivity were relatively stable, while the change of these properties became larger when the content of Al₂O₃ was less than 50%. With the content of ZrO₂ varying from 50% to 100%, the variation of these properties was up to 0.482 eV, 2.12 MV/cm, 135.35 nF/cm², and 11.64, respectively. Furthermore, it was demonstrated that the dielectric strength of nanolaminates were influenced significantly by the number (n) of bilayers. Every increment of one Al₂O₃-ZrO2 bilayer will enhance the dielectric strength by around 0.39 MV/cm (Vds ≈ 0.86 + 0.39n). This could be contributed to the amorphous alumina which interrupted the grain boundaries of zirconia.