Genome-wide identification and expression analysis of MYB gene family under nitrogen stress in Panax notoginseng.
Xiang ChenYucheng MaoWeiguo ChaiKaijing YanZongsuo LiangPengguo XiaPublished in: Protoplasma (2022)
The myeloblastosis (MYB) gene family, involved in regulating many important physiological and biochemical processes, is one of the largest transcript factor superfamilies in plants. Since the identification of genome sequencing of Panax notoginseng has been completed, there was little known about the whole genome of its specific MYB gene family and the response to abiotic stresses, in consideration of the excessive application of nitrogen fertilizers in P. notoginseng. In this study, 123 PnMYB genes (MYB genes of P. notoginseng) have been identified and divided into 3 subfamilies by the phylogenetic analysis. These PnMYB genes were unevenly located on 12 chromosomes. Meanwhile, the gene structure and protein conserved domain were established by MEME Suite. The analysis of collinear relationships reflected that there were 121 homologous genes between P. notoginseng and Arabidopsis and 30 between P. notoginseng and rice. Moreover, cis-acting elements of PnMYB gene promoters were predicted which indicated that PnMYBs are involved in biotic, abiotic stress, and hormone induction. The expressions of PnMYB transcription factors in its roots, flowers, and leaves were detected by qRT-PCR and they had tissue-specific expressions and related to the growth of different tissues. Under nitrogen stress, MYB transcription factors had great feedback. Ten R2R3-MYB subfamily genes were significantly induced and indicated the possible function of protecting P. notoginseng from excess nitrogen. With further knowledge on identification of PnMYB gene related to tissue selectivity and abiotic stresses, this study laid the foundation for the functional development of PnMYB gene family and improved the cultivation of P. notoginseng.