A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length.
Jun ZhangLong ZhangChang LeiXiaodan HuangYannan YangChengzhong YuPublished in: Langmuir : the ACS journal of surfaces and colloids (2018)
The insulin immobilization behaviors of silica vesicles (SV) before and after modification with hydrophobic alkyl -C8 and -C18 groups have been studied and correlated to the grafted alkyl chain length. In order to minimize the influence from the other structural parameters, monolayered -C8 or -C18 groups are grafted onto SV with controlled density. The insulin immobilization capacity of SV is dependent on the initial insulin concentrations (IIC). At high IIC (2.6-3.0 mg/mL), the trend of insulin immobilization capacity of SV is SV-OH > SV-C8 > SV-C18, which is determined mainly by the surface area of SV. At medium IIC (0.6-1.9 mg/mL), the trend changes to SV-C8 ≥ SV-C18 > SV-OH as both the surface area and alkyl chain length contribute to the insulin immobilization. At an extremely low IIC, the hydrophobic-hydrophobic interaction between the alkyl group and insulin molecules plays the most significant role. Consequently, SV-C18 with longer alkyl groups and the highest hydrophobicity show the best insulin enrichment performance compared to SV-C8 and SV-OH, as evidenced by an insulin detection limit of 0.001 ng/mL in phosphate buffered saline (PBS) and 0.05 ng/mL in artficial urine determined by mass spectrometry (MS).