Login / Signup

The mechanism of fluidity improvement of cement slurry by graphene oxide: a study on nanofriction.

Xiang JiDongshuai HouMuHan WangLiu QingFen HongYanshuai WangGuohao FangShuxian HongMengmeng Li
Published in: Physical chemistry chemical physics : PCCP (2024)
Graphene oxide (GO) as a nano-reinforcing material has received extensive attention in cement composite materials. This paper employed molecular dynamics to simulate the friction process of calcium silicate hydrate (CSH) particles in the presence of double-sided and single-sided GCOOH (graphene oxide with a -COOH functional group, covering 10% of the surface). The investigation uncovered the lubricating effects of bifacial and unifacial GCOOH on the CSH interface. The findings indicate that the interfacial friction among CSH particles follows the sequence of double-sided GCOOH > pure CSH > single-sided GCOOH. In the double-sided GCOOH system, a greater external force is needed on the opposing side to alter the interaction with water molecules, calcium ions, and silica-oxygen tetrahedra, thereby enhancing friction. In contrast, the majority of the carboxyl groups on the single-sided GCOOH surface are strongly adsorbed onto the CSH surface, facilitating the entry of additional water molecules into the interlayer. Conversely, the unmodified side of the GCOOH has lower interactions with water molecules, hence improving its lubricating properties.
Keyphrases
  • molecular dynamics
  • magnetic resonance
  • working memory
  • magnetic resonance imaging
  • computed tomography
  • quantum dots
  • molecular dynamics simulations
  • ionic liquid
  • water soluble
  • solar cells