Login / Signup

Optimized ICPCVD-Based TiO 2 for Photonics.

Aurore AndrieuxMarie-Maxime MennemanteuilNicolas GeoffroyMélanie EmoLaurent MarkeyKamal Hammani
Published in: Materials (Basel, Switzerland) (2022)
We propose obtaining TiO 2 films by ICPCVD for the fabrication of low-loss waveguides. The challenge is to produce a dense and homogeneous layer with a high refractive index and low absorption in the visible range. Crystallized layers with features such as grains and amorphous layers have a rather low index for the application targeted, so we aimed for an intermediate state. We investigated the influence of plasma power, pressure, deposition time and annealing temperature on the structural, crystalline, and optical properties in order to tailor them. We showed that crystallization into rutile at the nanoscale occurred during deposition and under wisely chosen conditions, we reached a refractive index of 2.5 at 630 nm without creating interfaces or inhomogeneity in the layer depth. Annealing permits one to further increase the index, up to 2.6. TEM analysis on one sample before and after annealing confirmed the nano-polycrystallization and presence of both anatase and rutile phases and we considered that this intermediate state of crystallization was the best compromise for guided optics.
Keyphrases
  • room temperature
  • quantum dots
  • atomic force microscopy
  • optical coherence tomography
  • visible light
  • data analysis