Login / Signup

Highly deformable hydrogels constructed by pH-triggered polyacid nanoparticle disassembly in aqueous dispersions.

Wenkai WangDongdong LuMingning ZhuJennifer M SaundersAmir H MilaniSteven P ArmesBrian R Saunders
Published in: Soft matter (2018)
Most hydrogels are prepared using small-molecule monomers but unfortunately this approach may not be feasible for certain biomaterial applications. Consequently, alternative gel construction strategies have been established, which include using covalent inter-linking of preformed gel particles, or microgels (MGs). For example, covalently interlinking pH-responsive MGs can produce hydrogels comprising doubly crosslinked microgels (DX MGs). We hypothesised that the deformability of such DX MGs was limited by the presence of intra-MG crosslinking. Thus, in this study we designed new nanoparticle (NP)-based gels based on pH-swellable NPs that are not internally crosslinked. Two polyacid NPs were synthesised containing methacrylic acid (MAA) and either ethyl acrylate (EA) or methyl methacrylate (MMA). The PMAA-EA and PMAA-MMA NPs were subsequently vinyl-functionalised using glycidyl methacrylate (GMA) prior to gel formation via free-radical crosslinking. The NPs mostly disassembled on raising the solution pH but some self-crosslinking was nevertheless evident. The gels constructed from the EA- and MMA-based NPs had greater breaking strains than a control DX MG. The effect of varying the solution pH during curing on the morphology and mechanical properties of gels prepared using PMAA-MMA-GMA NPs was studied and both remarkable deformability and excellent recovery were observed. The gels were strongly pH-responsive and had tensile breaking strains of up to 420% with a compressive strain-at-break of more than 93%. An optimised formulation produced the most deformable and stretchable gel yet constructed using NPs or MGs as the only building block.
Keyphrases
  • hyaluronic acid
  • oxide nanoparticles
  • wound healing
  • drug delivery
  • small molecule
  • wastewater treatment
  • escherichia coli
  • drug release
  • extracellular matrix
  • ionic liquid
  • iron oxide
  • protein protein