Login / Signup

Dorsomedial prefrontal neural ensembles reflect changes in task utility that culminate in task quitting.

Blake S PorterKristin L Hillman
Published in: Journal of neurophysiology (2021)
When performing a physically demanding behavior, sometimes the optimal choice is to quit the behavior rather than persist to minimize energy expenditure for the benefits gained. The dorsomedial prefrontal cortex (dmPFC), consisting of the anterior cingulate cortex and secondary motor area, likely contributes toward such utility assessments. Here, we examined how male rat dmPFC single unit and ensemble-level activity corresponded to changes in task utility and quitting in an effortful weight lifting task. Rats carried out two task paradigms: one that became progressively more physically demanding over time and a second fixed effort version. Rats could quit the task at any time. Dorsomedial PFC neurons were highly responsive to each behavioral stage of the task, consisting of rope pulling, reward retrieval, and reward area leaving. Activity was highest early in sessions, commensurate with the highest relative task utility, then decreased until the point of quitting. Neural ensembles consistently represented the sequential behavioral phases of the task. However, these representations were modified over time and became more distinct over the course of the session. These results suggest that dmPFC neurons represent behavioral states that are dynamically modified as behaviors lose their utility, culminating in task quitting.NEW & NOTEWORTHY When carrying out a physically demanding task, animals must continually assess whether to persist or quit. In this study, we recorded neurons in the dorsomedial prefrontal cortex (dmPFC) of rats as they carried out a challenging weightlifting task, up to the point of quitting. We demonstrate that dmPFC neurons form a representation of the task that is modified, via a decrease in firing rate, by the decreasing the utility of the task that may signal quitting.
Keyphrases
  • prefrontal cortex
  • smoking cessation
  • replacement therapy
  • spinal cord
  • functional connectivity
  • working memory
  • oxidative stress
  • body mass index
  • weight loss
  • cancer therapy
  • high intensity
  • drug delivery