Login / Signup

Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.

Marketa KauckaTomas ZikmundMarketa TesarovaDaniel GyllborgAndreas HellanderJosef JarosJozef KaiserJulian PetersenBara SzarowskaPhillip T NewtonVyacheslav DyachukLei LiHong QianAnne-Sofie JohanssonYuji MishinaJoshua D CurrieElly M TanakaAlek EricksonAndrew DudleyHjalmar BrismarPaul SouthamEnrico CoenMin ChenLee S WeinsteinAles HamplErnest ArenasAndrei S ChaginKaj FriedIgor Adameyko
Published in: eLife (2017)
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
Keyphrases
  • extracellular matrix
  • gene expression
  • signaling pathway
  • high intensity
  • optical coherence tomography
  • postmenopausal women
  • bone mineral density
  • genome wide
  • dna methylation