Login / Signup

Molecular mechanism of the repressive phase of the mammalian circadian clock.

Xuemei CaoYanyan YangChristopher P SelbyZhenxing LiuAziz Sancar
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
The mammalian circadian clock consists of a transcription-translation feedback loop (TTFL) composed of CLOCK-BMAL1 transcriptional activators and CRY-PER transcriptional repressors. Previous work showed that CRY inhibits CLOCK-BMAL1-activated transcription by a "blocking"-type mechanism and that CRY-PER inhibits CLOCK-BMAL1 by a "displacement"-type mechanism. While the mechanism of CRY-mediated repression was explained by both in vitro and in vivo experiments, the CRY-PER-mediated repression in vivo seemed in conflict with the in vitro data demonstrating PER removes CRY from the CLOCK-BMAL1-E-box complex. Here, we show that CRY-PER participates in the displacement-type repression by recruiting CK1δ to the nucleus and mediating an increased local concentration of CK1δ at CLOCK-BMAL1-bound promoters/enhancers and thus promoting the phosphorylation of CLOCK and dissociation of CLOCK-BMAL1 along with CRY from the E-box. Our findings bring clarity to the role of PER in the dynamic nature of the repressive phase of the TTFL.
Keyphrases
  • transcription factor
  • gene expression
  • machine learning
  • data analysis