Login / Signup

Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO 2 , O 2 , and N 2 permeability/selectivity.

Bassem Fareed FelembanSadia Sagar IqbalAli BahadarNazia HossainAbdul Jabbar
Published in: Environmental science and pollution research international (2023)
In this study, PDMS incorporated with SWCNTs have been fabricated via solution casting method for industrial applications and characterized by the analyses of SEM, FTIR, TGA, AFM, and MST. The modified membranes were further analyzed for CO 2 , O 2 , and N 2 gas permeability. The strategic membranes have five different weight ratios (0.013, 0.025, 0.038, 0.050, 0.063) compared to neat PDMS membranes. The even distribution of SWCNTs in PDMS provided results that showed improvement in thermal stability. However, mechanical strength has been weakened with increased concentration of nanofiller because of the increase in the number of SWCNTs by increases that imperfections become more severe. The designed polymeric membranes with good thermal stability and adequate mechanical strength can be used for the selectivity and permeability of CO 2 , O 2 , and N 2 gases. The effect of the PDMS-SWCNTs on gas permeability has been studied. 0.063 wt.% SWCNTs presented the maximum permeability of CO 2 gas while maximum O 2 and N 2 gas permeability have been obtained by 0.013 wt.% SWCNTs. The ideal selectivity of mixed (50:50) gas conditions has been tested. The maximum CO 2 /N 2 ideal selectivity was obtained by 0.050 and 0.063 wt.% SWCNTs while maximum O 2 /N 2 ideal selectivity obtained by 0.050 wt.% SWCNTs. Therefore, the fabrication of this novel SWCNTs-PDMS membrane may lead to separating the industrial exhaust and be used as a potential membrane for environmental remediation in the future.
Keyphrases