Login / Signup

Eye movement-related brain potentials during assisted navigation in real-world environments.

Anna WunderlichKlaus Gramann
Published in: The European journal of neuroscience (2020)
Conducting neuroscience research in the real-world remains challenging because of movement- and environment-related artifacts as well as missing control over stimulus presentation. The present study overcame these restrictions by mobile electroencephalography (EEG) and data-driven analysis approaches during a real-world navigation task. During assisted navigation through an unfamiliar city environment, participants received either standard or landmark-based auditory navigation instructions. EEG data were recorded continuously during navigation. Saccade- and blink-events as well as gait-related EEG activity were extracted from sensor level data. Brain activity associated with the navigation task was identified by subsequent source-based cleaning of non-brain activity and unfolding of overlapping event-related potentials. When navigators received landmark-based instructions compared to those receiving standard navigation instructions, the blink-related brain potentials during navigation revealed higher amplitudes at fronto-central leads in a time window starting at 300 ms after blinks, which was accompanied by improved spatial knowledge acquisition tested in follow-up spatial tasks. Replicating improved spatial knowledge acquisition from previous experiments, the present study revealed eye movement-related brain potentials to point to the involvement of higher cognitive processes and increased processing of incoming information during periods of landmark-based instructions. The study revealed neuronal correlates underlying visuospatial information processing during assisted navigation in the real-world providing a new analysis approach for neuroscientific research in freely moving participants in uncontrollable real-world environments.
Keyphrases