Login / Signup

Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective.

David SorianoM I KatsnelsonJ Fernández-Rossier
Published in: Nano letters (2020)
The discovery of ferromagnetic order in monolayer two-dimensional (2D) crystals has opened a new venue in the field of 2D materials. Two-dimensional magnets are not only interesting on their own, but their integration in van der Waals heterostructures allows for the observation of new and exotic effects in the ultrathin limit. The family of chromium trihalides, CrI3, CrBr3, and CrCl3, is so far the most studied among magnetic 2D crystals. In this Mini Review, we provide a perspective of the state of the art of the theoretical understanding of magnetic 2D trihalides, most of which will also be relevant for other 2D magnets, such as vanadium trihalides. We discuss both the well-established facts, such as the origin of the magnetic moment and magnetic anisotropy, and address as well open issues such as the nature of the anisotropic spin couplings and the magnitude of the magnon gap. Recent theoretical predictions on Moiré magnets and magnetic skyrmions are also discussed. Finally, we give some prospects about the future interest of these materials and possible device applications.
Keyphrases
  • molecularly imprinted
  • room temperature
  • small molecule
  • current status
  • solid phase extraction
  • single molecule
  • high efficiency
  • transition metal
  • simultaneous determination