Login / Signup

A Cationic NHC-Supported Borole.

Tobias HeitkemperChristian P Sindlinger
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
This work describes the synthesis and characterization of a highly reactive cationic borole. Halide abstraction with Li{Al[OC(CF3 )3 ]4 } from the NHC-chloroborole adduct yields the first stable NHC-supported 1-(Me NHC)-2,5-(SiMe3 )2 -3,4-(Ph*)2 -borole cation. Electronically, it features both a five-membered cyclic conjugated 4 π-electron system and a cationic charge and thus resembles the yet elusive cyclopentadienyl cation. The borole cation was characterized crystallographically, spectroscopically (NMR, UV/Vis), by cyclovoltammetry, microanalysis and mass-spectrometry and its electronic structure was probed computationally. The cation reacts with tolane and reversibly binds carbon monoxide. Direct comparison with the structurally related, yet neutral, 1-mesityl borole reveals strong Lewis acidity, reduced HOMO-LUMO gaps, and increased anti-aromatic character.
Keyphrases
  • ionic liquid
  • mass spectrometry
  • high resolution
  • solar cells
  • solid state
  • photodynamic therapy
  • high performance liquid chromatography
  • ms ms
  • drug induced
  • solid phase extraction