Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes.
Fu-Xing NiuZhi-Bo YanYuan-Bin HuangJian-Zhong LiuPublished in: Journal of agricultural and food chemistry (2021)
A novel cell-free biosynthesis system based on a mixture of chassis cell extracts and purified Spy-cyclized enzymes (CFBS-mixture) was developed. As a demonstration, the CFBS-mixture was applied to chlorogenic acid (CGA) biosynthesis. The mix-and-match and Plackett-Burman experiments demonstrated that Lonicera japonica hydroxycinnamate-CoA quinate transferase and p-hydroxyphenylacetate 3-hydroxylase were the key enzymes for the production of CGA. After optimization of the concentrations of the biosynthetic enzymes in the CFBS-mixture reaction using the Plackett-Burman experimental design and the path of the steepest ascent, 711.26 ± 15.63 mg/L CGA was produced after 16 h, which is 71.1-fold the yield obtained using the conventional crude extract-based CFBS and 9.1-fold the reported yield obtained using the living cells. Based on the CFBS-mixture results, the production of CGA was further enhanced in engineered Escherichia coli. The CFBS-mixture strategy is highly effective and will be useful for high-level CFBS of natural products.