Login / Signup

Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from Alpinia officinarum hance rhizomes: computational studies and in vitro validation.

H A Al GarniAli M El HalawanyAbdulrahman E KoshakAzizah M MalebariAbdulrahim Altoam AlzainGamal Abdallah MohamedSabrin Ragab Mohamed IbrahimNesrine S El SayedHossam Mohamed Abdallah
Published in: SAR and QSAR in environmental research (2024)
Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p -hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).
Keyphrases
  • molecular docking
  • anti inflammatory
  • high throughput
  • oxidative stress
  • crystal structure
  • molecular dynamics simulations
  • endothelial cells
  • single cell
  • mass spectrometry
  • case control
  • essential oil