Improving the Long-Term Stability of PbTe-Based Thermoelectric Modules: From Nanostructures to Packaged Module Architecture.
Philipp SauerschnigNoriyuki SaitouMasanori KoshinoTakao IshidaAtsushi YamamotoMichihiro OhtaPublished in: ACS applied materials & interfaces (2024)
Nanostructured lead telluride PbTe is among the best-performing thermoelectric materials, for both p- and n-types, for intermediate temperature applications. However, the fabrication of power-generating modules based on nanostructured PbTe still faces challenges related to the stability of the materials, especially nanoprecipitates, and the bonding of electric contacts. In this study, in situ high-temperature transmission electron microscopy observation confirmed the stability of nanoprecipitates in p-type Pb 0.973 Na 0.02 Ge 0.007 Te up to at least ∼786 K. Then, a new architecture for a packaged module was developed for improving durability, preventing unwanted interaction between thermoelectric materials and electrodes, and for reducing thermal stress-induced crack formation. Finite element method simulations of thermal stresses and power generation characteristics were utilized to optimize the new module architecture. Legs of nanostructured p-type Pb 0.973 Na 0.02 Ge 0.007 Te (maximum zT ∼ 2.2 at 795 K) and nanostructured n-type Pb 0.98 Ga 0.02 Te (maximum zT ∼ 1.5 at 748 K) were stacked with flexible Fe-foil diffusion barrier layers and Ag-foil-interconnecting electrodes forming stable interfaces between electrodes and PbTe in the packaged module. For the bare module, a maximum conversion efficiency of ∼6.8% was obtained for a temperature difference of ∼480 K. Only ∼3% reduction in output power and efficiency was found after long-term operation of the bare module for ∼740 h (∼31 days) at a hot-side temperature of ∼673 K, demonstrating good long-term stability.