Login / Signup

Machine learning identifies pathophysiologically and prognostically informative phenotypes among patients with mitral regurgitation undergoing transcatheter edge-to-edge repair.

Teresa TrenkwalderMark LachmannLukas StolzVera FortmeierHéctor Alfonso Alvarez CovarrubiasElena RippenFriederike SchürmannAntonia PreschMoritz von ScheidtCeline RuffAmelie HesseMuhammed GerçekNicola Patrick MayrIlka OttTibor SchusterGerhard HarmsenShinsuke YuasaSebastian KufnerPetra HoppmannChristian KupattHeribert SchunkertAdnan KastratiKarl-Ludwig LaugwitzVolker RudolphMichael JonerJörg HausleiterErion Xhepa
Published in: European heart journal. Cardiovascular Imaging (2023)
ML-enabled phenotyping captures the complexity of extra-mitral valve cardiac damage, which does not necessarily occur in a sequential fashion. This novel phenotyping approach can refine risk stratification in patients undergoing MV TEER in the future.
Keyphrases