Merged experimental guided computational strategy toward tuberculosis treatment mediated by alveolar macrophages mannose receptor.
Maharshi ThallaKamal Kantnull DalchandRavi RawatSubham BanerjeePublished in: Journal of biomolecular structure & dynamics (2019)
Macrophage mannose receptor (MMR) is a C-type lectin that regulates the phagocytosis and phagocytosis-lysosome (P-L) fusion in tuberculosis. Mannose-capped lipoarabinomannan, a lipoglycan present at the surface of Mycobacterium tuberculosis, is an important factor in phagocyte attachment and internalization that is specific for MMR. Based on this idea, herein we have designed our experiment to understand the better site-specific delivery against tuberculosis. An experimental outcome was used as a basis to revisit the reverse experimental strategy for tuberculosis management. Stearic mannose was prepared from stearic acid incubation with the D-mannose. Interestingly, stearic mannose explained its internalization via stimulating actin-mediated phagocytic pathway of MMR experimentally. Following, an in silico strategy towards hypothetical designing of various mannose-stearyl conjugates (SBKK1-7) against tuberculosis, as binding promoter of MMR (PDB: 1EGI), was carried out using molecular docking and dynamics approaches. Overall, SPKK-5 viz. ortho stearic mannose showed a higher binding affinity with notable H-bonding and hydrophobic interactions. Pharmacokinetic and toxicity examinations illustrated an ideal range of descriptors values for apex screened compounds. Molecular dynamics simulations have confirmed its significant intactness with the MMR. Ultimately, the whole effort led to the identification of promising hit (SBKK-5), which positively correlates with the experimental work and furthermore need to explore its novel drug delivery systems with improved anti-tubercular therapy.Communicated by Ramaswamy H. Sarma.
Keyphrases
- mycobacterium tuberculosis
- molecular docking
- molecular dynamics simulations
- pulmonary tuberculosis
- drug delivery
- hiv aids
- dna methylation
- binding protein
- adipose tissue
- gene expression
- oxidative stress
- emergency department
- adverse drug
- cancer therapy
- living cells
- bone marrow
- antiretroviral therapy
- electronic health record
- drug release