Login / Signup

Integration of Multiple Redox Centers into Porous Coordination Networks for Ratiometric Sensing of Dissolved Oxygen.

Rongxiu TuYujun WangJinyun PengChuantao HouZonghua Wang
Published in: ACS applied materials & interfaces (2021)
The application of porphyrin metal-organic frameworks (MOFs) as a ratiometric electrochemical sensing platform is still unexplored. In this paper, we report a ratiometric electrochemical sensor by the integration of multiple redox centers into porphyrin MOFs for the detection of dissolved oxygen (DO). Specifically, the ferrocene (Fc) group was integrated into the nanosized PCN-222(Fe) (PCN = porous coordination networks) via acid-base reaction to synthesize the Fc@PCN-222(Fe) composite with two redox centers of the Fc group and Fe-porphyrin. The Fc group that is insensitive to DO serves as an internal reference, and the Fe-porphyrin in PCN-222(Fe) is a DO indicator. The ratios of the cathodic currents for the two redox centers exhibit a linear relationship with DO concentrations from 2.8 to 28.9 mg mL-1 and a limit of detection of 0.3 mg mL-1. In addition, the ratiometric electrochemical sensor has high selectivity and stability for DO sensing results from the Fc@PCN-222(Fe) composite. Because there are numerous redox centers, such as methylene blue and thionine, which can be integrated into MOFs, many MOF-based ratiometric electrochemical sensors can be simply developed for high-performance biosensing.
Keyphrases