Early association between respiratory mechanics and radiological changes in mechanically ventilated critically ill patients with COVID-19.
Andrius PranskunasJurgita ZaveckieneTautvydas BaranauskasBeatrice ZakarauskaiteDalia ZykuteTomas TamosuitisPublished in: Internal and emergency medicine (2023)
The chest X-ray (CXR) Brixia scoring system was developed exclusively for COVID-19 severity assessment. However, no association between the score and respiratory mechanics during mechanical ventilation has been examined. Our aim was to evaluate the association between the CXR Brixia score and respiratory mechanics on the first day of mechanical ventilation in critically ill COVID-19 patients. A total of 77 COVID-19 patients who underwent mechanical ventilation and CXR in the ICU setting were retrospectively included. The CXR Brixia scoring system was applied, and respiratory mechanics data were recorded on the first day of invasive mechanical ventilation. Median Simplified Acute Physiologic Score II (SAPSII) and Sequential Organ Failure Assessment (SOFA) scores were 40 (31-54) and 6 (4-8), respectively. The median Brixia score was 14 (11-16). The correlation between the Brixia score and static compliance or driving pressure was significant, at r = -0.38, p < 0.001 and r = 0.33, p = 0.003, respectively. Using multivariable linear regression, the model with the B zone was significantly better associated with static compliance (F = 11.5, R 2 = 0.14, p = 0.001) and driving pressure (F = 11.3, R 2 = 0.13, p = 0.001). In logistic regression analysis, the Brixia score (OR 1.24; 95% CI 1.07, 1.45; p = 0.005), B zone (OR 2.60; 95% CI 1.30, 5.20; p = 0.007), C zone (OR 2.50; 95% CI 1.23, 5.11; p = 0.012), A zone (OR 2.01; 95% CI 1.16, 3.44; p = 0.012), and D zone (OR 1.84; 95% CI 1.07, 3.17; p = 0.027) significantly predicted a driving pressure > 14 cmH 2 O. There is a relationship between changes in Brixia-scored chest X-ray images and compliance and driving pressure on the first day of invasive mechanical ventilation. We identified some CXR areas using the Brixia score, and evaluation of the Brixia score may provide additional information for predicting respiratory mechanics.