Login / Signup

Functional brain network alterations in the co-occurrence of autism spectrum disorder and attention deficit hyperactivity disorder.

Qiwen LinYafei ShiHuiyuan HuangBingqing JiaoChangyi KuangJiawen ChenYuyang RaoYunpeng ZhuWenting LiuRuiwang HuangJiabao LinLijun Ma
Published in: European child & adolescent psychiatry (2023)
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two highly prevalent and commonly co-occurring neurodevelopmental disorders. The neural mechanisms underpinning the comorbidity of ASD and ADHD (ASD + ADHD) remain unclear. We focused on the topological organization and functional connectivity of brain networks in ASD + ADHD patients versus ASD patients without ADHD (ASD-only). Resting-state functional magnetic resonance imaging (rs-fMRI) data from 114 ASD and 161 typically developing (TD) individuals were obtained from the Autism Brain Imaging Data Exchange II. The ASD patients comprised 40 ASD + ADHD and 74 ASD-only individuals. We constructed functional brain networks for each group and performed graph-theory and network-based statistic (NBS) analyses. Group differences between ASD + ADHD and ASD-only were analyzed at three levels: nodal, global, and connectivity. At the nodal level, ASD + ADHD exhibited topological disorganization in the temporal and occipital regions, compared with ASD-only. At the global level, ASD + ADHD and ASD-only displayed no significant differences. At the connectivity level, the NBS analysis revealed that ASD + ADHD showed enhanced functional connectivity between the prefrontal and frontoparietal regions, as well as between the orbitofrontal and occipital regions, compared with ASD-only. The hippocampus was the shared region in aberrant functional connectivity patterns in ASD + ADHD and ASD-only compared with TD. These findings suggests that ASD + ADHD displays altered topology and functional connectivity in the brain regions that undertake social cognition, language processing, and sensory processing.
Keyphrases