Development of a gene signature associated with iron metabolism in lung adenocarcinoma.
Junqi QinZhanyu XuKun DengFanglu QinJiangbo WeiLiqiang YuanYu SunTiaozhan ZhengShikang LiPublished in: Bioengineered (2021)
There are few studies on the role of iron metabolism genes in predicting the prognosis of lung adenocarcinoma (LUAD). Therefore, our research aims to screen key genes and to establish a prognostic signature that can predict the overall survival rate of lung adenocarcinoma patients. RNA-Seq data and corresponding clinical materials of 594 adenocarcinoma patients from The Cancer Genome Atlas(TCGA) were downloaded. GSE42127 of Gene Expression Omnibus (GEO) database was further verified. The multi-gene prognostic signature was constructed by the Cox regression model of the Least Absolute Shrinkage and Selection Operator (LASSO). We constructed a prediction signature with 12 genes (HAVCR1, SPN, GAPDH, ANGPTL4, PRSS3, KRT8, LDHA, HMMR, SLC2A1, CYP24A1, LOXL2, TIMP1), and patients were split into high and low-risk groups. The survival graph results revealed that the survival prognosis between the high and low-risk groups was significantly different (TCGA: P < 0.001, GEO: P = 0.001). Univariate and multivariate Cox regression analysis confirmed that the risk value is a predictor of patient OS (P < 0.001). The area under the time-dependent ROC curve (AUC) indicated that our signature had a relatively high true positive rate when predicting the 1-year, 3-year, and 5-year OS of the TCGA cohort, which was 0.735, 0.711, and 0.601, respectively. In addition, immune-related pathways were highlighted in the functional enrichment analysis. In conclusion, we developed and verified a 12-gene prognostic signature, which may be help predict the prognosis of lung adenocarcinoma and offer a variety of targeted options for the precise treatment of lung cancer.
Keyphrases
- end stage renal disease
- genome wide
- gene expression
- chronic kidney disease
- ejection fraction
- newly diagnosed
- rna seq
- peritoneal dialysis
- prognostic factors
- squamous cell carcinoma
- machine learning
- dna methylation
- emergency department
- patient reported outcomes
- deep learning
- bioinformatics analysis
- genome wide analysis
- lymph node metastasis