Upconversion Luminescence of Silica-Calcia Nanoparticles Co-doped with Tm3+ and Yb3+ Ions.
Katarzyna Halubek-GluchowskaDamian SzymanskiThi Ngoc Lam TranMaurizio FerrariAnna ŁukowiakPublished in: Materials (Basel, Switzerland) (2021)
Looking for upconverting biocompatible nanoparticles, we have prepared by the sol-gel method, silica-calcia glass nanopowders doped with different concentration of Tm3+ and Yb3+ ions (Tm3+ from 0.15 mol% up to 0.5 mol% and Yb3+ from 1 mol% up to 4 mol%) and characterized their structure, morphology, and optical properties. X-ray diffraction patterns indicated an amorphous phase of the silica-based glass with partial crystallization of samples with a higher content of lanthanides ions. Transmission electron microscopy images showed that the average size of particles decreased with increasing lanthanides content. The upconversion (UC) emission spectra and fluorescence lifetimes were registered under near infrared excitation (980 nm) at room temperature to study the energy transfer between Yb3+ and Tm3+ at various active ions concentrations. Characteristic emission bands of Tm3+ ions in the range of 350 nm to 850 nm were observed. To understand the mechanism of Yb3+-Tm3+ UC energy transfer in the SiO2-CaO powders, the kinetics of luminescence decays were studied.