Login / Signup

Interplay of reactive interference and crowding effects in the diffusion-influenced reaction kinetics.

Kyusup LeeSangyoub Lee
Published in: The Journal of chemical physics (2020)
We investigate the interplay of reactive interference and crowding effects in the irreversible diffusion-influenced bimolecular reactions of the type A+B→P+B by using the Brownian dynamics simulation method. It is known that the presence of nonreactive crowding agents retards the reaction rate when the volume fraction of the crowding agents is large enough. On the other hand, a high concentration of B is known to increase the reaction rate more than expected from the mass action law, although the B's may also act as crowders. Therefore, it would be interesting to see which effect dominates when the number density of B as well as the number density of the crowders increases. We will present an approximate theory that provides a reasonable account for the Brownian dynamics simulation results.
Keyphrases