Login / Signup

High-Density and Monolayer-Level Integration of π-Conjugated Units: Amphiphilic Carbazole Homopolymer Langmuir-Blodgett Films.

Shunsuke YamamotoNanae NishinaJun MatsuiTokuji MiyashitaMasaya Mitsuishi
Published in: Langmuir : the ACS journal of surfaces and colloids (2018)
Precise integration of π-conjugated units is a key issue to achieve molecular (nano) electronic devices based on organic semiconductor materials. We specifically examine the Langmuir-Blodgett technique, which allows high-density integration of π-conjugated units. In this study, we designed a carbazole containing acrylamide-based homopolymer [poly(9-ethyl-3-carbazolyl acrylamide) (pCzAA)], in which the π-conjugated unit is connected with a hydrophilic amide unit directly as a side chain. Its Langmuir-Blodgett film formation properties were investigated. The pCzAA polymer took a stable monolayer formation in the presence of a small amount (ca. 10 mol %) of poly( N-dodecylacrylamide) (pDDA). Compared with amphiphilic carbazole-containing copolymers described in earlier reports, the direct connection of π-conjugated units through amide bonding enables the Cz content in monolayers to exceed that of the copolymer monolayers (ca. 30 mol %) dramatically. pCzAA:pDDA takes highly ordered layer structures toward the out-of-plane direction, although no structural order is formed in the in-plane direction. This method is a practical means to develop low-dimensional and high-density integration of π-conjugated units for molecular electronics.
Keyphrases
  • high density
  • photodynamic therapy
  • room temperature
  • emergency department
  • single molecule
  • drug delivery
  • adverse drug