Machine Learning Assisted MALDI Mass Spectrometry for Rapid Antimicrobial Resistance Prediction in Clinicals.
Weibo GaoHang LiJingxian YangJinming ZhangRongxin FuJiaxi PengYechen HuYitong LiuYingshi WangShuang LiShuailong ZhangPublished in: Analytical chemistry (2024)
Antimicrobial susceptibility testing (AST) plays a critical role in assessing the resistance of individual microbial isolates and determining appropriate antimicrobial therapeutics in a timely manner. However, conventional AST normally takes up to 72 h for obtaining the results. In healthcare facilities, the global distribution of vancomycin-resistant Enterococcus fecium (VRE) infections underscores the importance of rapidly determining VRE isolates. Here, we developed an integrated antimicrobial resistance (AMR) screening strategy by combining matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) with machine learning to rapidly predict VRE from clinical samples. Over 400 VRE and vancomycin-susceptible E. faecium (VSE) isolates were analyzed using MALDI-MS at different culture times, and a comprehensive dataset comprising 2388 mass spectra was generated. Algorithms including the support vector machine (SVM), SVM with L1-norm, logistic regression, and multilayer perceptron (MLP) were utilized to train the classification model. Validation on a panel of clinical samples (external patients) resulted in a prediction accuracy of 78.07%, 80.26%, 78.95%, and 80.54% for each algorithm, respectively, all with an AUROC above 0.80. Furthermore, a total of 33 mass regions were recognized as influential features and elucidated, contributing to the differences between VRE and VSE through the Shapley value and accuracy, while tandem mass spectrometry was employed to identify the specific peaks among them. Certain ribosomal proteins, such as A0A133N352 and R2Q455, were tentatively identified. Overall, the integration of machine learning with MALDI-MS has enabled the rapid determination of bacterial antibiotic resistance, greatly expediting the usage of appropriate antibiotics.
Keyphrases
- mass spectrometry
- machine learning
- antimicrobial resistance
- liquid chromatography
- tandem mass spectrometry
- gas chromatography
- high performance liquid chromatography
- ultra high performance liquid chromatography
- high resolution mass spectrometry
- deep learning
- artificial intelligence
- solid phase extraction
- healthcare
- high resolution
- big data
- simultaneous determination
- capillary electrophoresis
- end stage renal disease
- genetic diversity
- methicillin resistant staphylococcus aureus
- newly diagnosed
- ejection fraction
- chronic kidney disease
- prognostic factors
- staphylococcus aureus
- small molecule
- microbial community
- peritoneal dialysis
- multiple sclerosis
- loop mediated isothermal amplification
- biofilm formation
- health information
- escherichia coli