Login / Signup

Influence of Cross-Linkers on the in Vitro Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels.

Panita MaturavongsaditXiangdong BiKamolrat MetavarayuthJittima Amie LuckanagulQian Wang
Published in: ACS applied materials & interfaces (2017)
This study aims to investigate the effect of the structures of cross-linkers on the in vitro chondrogenic differentiation of bone mesenchymal stem cells (BMSCs) in hyaluronic acid (HA)-based hydrogels. The hydrogels were prepared by the covalent cross-linking of methacrylated HA with different types of thiol-tailored molecules, including dithiothreitol (DTT), 4-arm poly(ethylene glycol) (PEG), and multiarm polyamidoamine (PAMAM) dendrimer using thiol-ene "click" chemistry. The microstructure, mechanical properties, diffusivity, and degradation rates of the resultant hydrogels were controlled by the structural feature of different cross-linkers. BMSCs were then encapsulated in the resulting hydrogels and cultured in chondrogenic conditions. Overall, chondrogenic differentiation was highly enhanced in the PEG-cross-linked HA hydrogels, as measured by glycosaminoglycan (GAG) and collagen accumulation. The physical properties of hydrogels, especially the mechanical property and microarchitecture, were resulted from the structures of different cross-linkers, which subsequently modulated the fate of BMSC differentiation.
Keyphrases