Login / Signup

Hydrothermal synthesis of (Zr,U)SiO 4 : an efficient pathway to incorporate uranium into zircon.

Paul EstevenonThomas BarralArthur AvalloneMateo JeffredoAlexis De La HosAndrew C StrzeleckiXavier F Le GoffStéphanie SzenknectKristina O KvashninaPhilippe MoisyRenaud PodorXiaofeng GuoNicolas Dacheux
Published in: Dalton transactions (Cambridge, England : 2003) (2024)
The preparation of synthetic (Zr,U)SiO 4 solid solution is challenging, as the conventional high-temperature solid-state method limits the solubility of uranium (4 ± 1 mol%) in the orthosilicate phase due to its thermodynamic instability. However, these compounds are of great interest as a result of (Zr,U)SiO 4 solid solutions, with uranium contents exceeding this concentration, being observed as corium phases formed during nuclear accidents. It has been identified that hydrothermal synthesis pathways can be used for the formation of the metastable phase, such as USiO 4 . The investigation carried out in this study has indeed led to the confirmation of metastable (Zr,U)SiO 4 compounds with high uranium contents being formed. It was found that (Zr,U)SiO 4 forms a close-to-ideal solid solution with uranium loading of up to 60 mol% by means of hydrothermal treatment for 7 days at 250 °C, at pH = 3 and starting from an equimolar reactant concentration equal to 0.2 mol L -1 . A purification procedure was developed to obtain pure silicate compounds. After purification, these compounds were found to be stable up to 1000 °C under an inert atmosphere (argon). The characterisation methods used to explore the synthesis and thermal stability included powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and Raman spectroscopies, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).
Keyphrases