Login / Signup

The effect of orexin on the hypoxic ventilatory response of female rats is greatest in the active phase during diestrus.

Ruwaida Ben MusaJennifer Cornelius-GreenEileen M HasserKevin J Cummings
Published in: Journal of applied physiology (Bethesda, Md. : 1985) (2023)
We recently showed that in male rats, orexin contributes to the hypoxic ventilatory response (HVR), with a stronger effect in the active phase. The effect of orexin on the HVR in females has not been investigated. As estrogen can inhibit orexin neurons, here we hypothesized that orexin neurons are activated by hypoxia and facilitate the HVR only in diestrus, when estrogen is low. We exposed female rats ( n = 10) to near-isocapnic hypoxia ([Formula: see text] from 0.21 to 0.09) over ∼5 min, after vehicle and again after suvorexant (a dual OxR antagonist; 20 mg/kg ip), with ventilation measured using whole body plethysmography. Each rat was tested in proestrus or estrus (p/estrus), and again in diestrus, during both inactive and active phases. We also performed immunohistochemistry (IHC) to determine the proportion of orexin neurons activated by acute hypoxia during diestrus ( n = 6) or proestrus/estrus ( n = 6) in the active phase. In the inactive phase, the HVR was unaffected by OxR blockade, irrespective of estrus stage. In the active phase, the effect of OxR blockade depended on stage: the slope of the HVR was significantly reduced by OxR blockade only during diestrus. IHC revealed that hypoxia activated more orexin neurons during diestrus compared with p/estrus. We conclude that in females, orexin neurons are activated by hypoxia and contribute to the HVR only in diestrus when estrogen levels are low. Stage of the estrus cycle should be considered when examining the physiological function of orexin neurons in females. NEW & NOTEWORTHY We previously showed that orexin facilitates the hypoxic ventilatory response (HVR) of adult male rats during the active phase. Others have shown that estrogen inhibits orexin neurons. Here we show that orexin neurons are activated by hypoxia and facilitate the HVR of adult female rats during the active phase, but only in diestrus. These data suggest that orexin neurons facilitate the HVR in females when they are free from the inhibitory effects of estrogen.
Keyphrases
  • spinal cord
  • endothelial cells
  • intensive care unit
  • oxidative stress
  • machine learning
  • drug induced
  • liver failure
  • high resolution
  • smoking cessation
  • single molecule
  • data analysis