Login / Signup

The Effect of Tibial Insertion Site in Single-Bundle ACL Reconstruction during Gait Based on Motion Capture and Musculoskeletal Model.

Xiaotong LiYuqing CaoXiang WuAndrew S MerryweatherHaotian PangPengfei ZhengHang Xu
Published in: Journal of healthcare engineering (2022)
The purpose of this study was to investigate the effect of tibial insertion site (TIS) of the anterior cruciate ligament (ACL) in single-bundle ACL reconstruction on ligament force during gait. A musculoskeletal model with an ACL ligament was created, and gait data were collected based on the motion capture system from seven female patients with single-bundle ACL reconstruction. The TIS was simulated in OpenSim and systematically changed in 2.5 mm intervals (2.5 mm, 5.0 mm, and 7.5 mm) in the anteroposterior and mediolateral directions from the center. The changes of the ACL force overtime and peak force were compared using the Pearson correlation and paired t -test separately for all simulated TISs. The results indicated that anterior movement of the TIS would significantly increase the loading of reconstructed ACL and the risk of secondary injury, but the posterior TIS would keep the ACL loose during gait. The mediolateral change of the TIS also affected the ligament force during gait, which increased in the medial direction and decreased in lateral direction, but the magnitude of the change is relatively small compared with those measured in the anteroposterior direction. Therefore, during preoperative surgery planning, defining the outline of the ACL attachment site during surgery can help to guide the decision for the TIS and can significantly affect the reconstructed ACL force during gait, especially if the TIS is moved in the anteroposterior direction.
Keyphrases
  • anterior cruciate ligament
  • minimally invasive
  • single molecule
  • machine learning
  • mass spectrometry
  • deep learning