Login / Signup

Nesting Biology of the Potter Wasp Ancistrocerus flavomarginatus (Hymenoptera, Vespidae, Eumeninae) Revealed by Trap-Nest Experiments in Southern Brazil.

Hoana Klicia Lopes Guimarães OliveiraVanderlei Aparecido de LimaRafael Rodrigues FerrariMaria Luisa Tunes Buschini
Published in: Neotropical entomology (2022)
This paper provides the first description of the nesting biology of Ancistrocerus flavomarginatus (Brèthes) (Hymenoptera, Vespidae, Eumeninae), the only species of the genus found in Brazil. Our trap-nest experiments were conducted in two Mixed Ombrophilous Forest fragments and two adjacent matrices in Guarapuava (Paraná state, Brazil) from August 2017 to July 2018. In each area, we set 192 trap nests divided into six groups of 32 units, totalling 768 trap nests. We obtained a total of 47 nests of A. flavomarginatus, the vast majority of them (43, 91.5%) founded in the forest fragments. Most nests were built in wooden traps with a bore diameter of either 5 or 7 mm (19 nests in each type, 80.8%). Nests comprised 1-12 subcylindrical brood cells arranged linearly and separated from one another by transverse partitions of soil mastic. Larvae consumed 6-10 lepidopteran caterpillars before spinning the cocoon. Ancistrocerus flavomarginatus produced up to 6 annual generations (multivoltinism) and its immature forms were parasitized by chrysidid and ichneumonid wasps. The calculated sex ratio (1.78:1) was statistically biased towards males, but since they (21.3 ± 2.0 mg) were significantly lighter than females (50.9 ± 4.0 mg), the resulting investment ratio (1.34:1) was female biased. Males emerged from more external cells and developed significantly faster (27.2 ± 0.46 days) than females (30.1 ± 0.66 days), hence a case of protandry. We demonstrated that A. flavomarginatus is largely dependent on the Atlantic Rainforest and thus that deforestation poses a critical threat to this important species.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • climate change
  • oxidative stress
  • cell death
  • signaling pathway