Login / Signup

Mycorrhizal specificity differences in epiphytic habitat: three epiphytic orchids harbor distinct ecological and physiological specificity.

Kento RammitsuMasaru GotoYumi YamashitaTomohisa YukawaYuki Ogura-Tsujita
Published in: Journal of plant research (2023)
Orchidaceae has diversified in tree canopies and accounts for 68% of vascular epiphytes. Differences in mycorrhizal communities among epiphytic orchids can reduce species competition for mycorrhizal fungi and contribute to niche partitioning, which may be a crucial driver of the unusual species diversification among orchids. Mycorrhizal specificity-the range of fungi allowing mycorrhizal partnerships-was evaluated by assessment of mycorrhizal communities in the field (ecological specificity) and symbiotic cultures in the laboratory (physiological specificity) for three epiphytic orchids inhabiting Japan. Mycorrhizal communities were assessed with co-existing individuals growing within 10 cm of each other, revealing that ecological specificity varied widely among the three species, ranging from dominance by a single Ceratobasidiaceae fungus to diverse mycobionts across the Ceratobasidiaceae and Tulasnellaceae. In vitro seed germination tests revealed clear differences in physiological specificity among the three orchids, and that the primary mycorrhizal partners contributed to seed germination. In vitro compatibility ranges of three orchids strongly reflect the mycorrhizal community composition of wild populations. This suggests that differences in in situ mycorrhizal communities are not strongly driven by environmental factors, but are primarily due to physiological differences among orchid species. This study shows that the symbiotic strategy among the epiphytic orchid species varies from specialized to generalized association, which may contribute to biotic niche partitioning.
Keyphrases
  • climate change
  • structural basis
  • palliative care
  • public health
  • single cell
  • hiv infected