Mesoporous Hexanuclear Copper Cluster-Based Metal-Organic Framework with Highly Selective Adsorption of Gas and Organic Dye Molecules.
Dongmei WangJian ZhangGuanghua LiJiaqi YuanJiantang LiQisheng HuoYun-Ling LiuPublished in: ACS applied materials & interfaces (2018)
Despite many advances in the design and assembly of mesoporous metal-organic frameworks (meso-MOFs), it is still a challenge to obtain the desired structure. Here, we utilized an effective cluster cooperative assembly strategy by introducing SO42- ions as chelating binding sites to construct a novel mesoporous MOF, [Cu8(SO4)(TBA)6(OH)2( N,N-dimethylacetamide (DMA))4]·12DMA·12CH3OH [JLU-MOF51, H2TBA = 4-(1 H-tetrazol-5-yl)-benzoic acid]. Remarkably, the cooperative assembly of the infrequent hexanuclear [Cu6SO4(OH)2] cluster and the classical paddlewheel [Cu2(CO2)4] via linear hetero-N, O donor ligand results in an open three-dimensional framework, which possesses one-dimensional nanometer tube channels with the diameter of 24 and 28 Å. Fascinatingly, JLU-MOF51 displays an exceptionally large Langmuir surface area (5443 m2 g-1) and exhibits a high capacity for selective adsorption of C3H8 (C3H8: 348 cm3 g-1 at 273 K; C3H8/CH4 = 220 at 298 K). In addition, JLU-MOF51 can selectively adsorb fluorescein disodium salt dye among numerous organic dyes. An extremely high surface area and unique structural characteristics make JLU-MOF51 a promising meso-MOF material for the adsorption and separation of hydrocarbon gases and organic dyes. Moreover, this strategy will provide an effective means for constructing meso-MOFs via one-step synthesis.