Login / Signup

Intercellular calcium waves integrate hormonal control of glucose output in the intact liver.

Lawrence D GaspersNicola PierobonAndrew P Thomas
Published in: The Journal of physiology (2019)
Glucogenic hormones, including catecholamines and vasopressin, induce frequency-modulated cytosolic Ca2+ oscillations in hepatocytes, and these propagate as intercellular Ca2+ waves via gap junctions in the intact liver. We investigated the role of co-ordinated Ca2+ waves as a mechanism for integrating multiple endocrine and neuroendocrine inputs to control hepatic glucose production in perfused rat liver. Sympathetic nerve stimulation elicited localized Ca2+ increases that were restricted to hepatocytes in the periportal zone. During perfusion with subthreshold vasopressin, sympathetic stimulation converted asynchronous Ca2+ signals in a limited number of hepatocytes into co-ordinated intercellular Ca2+ waves that propagated across entire lobules. A similar synergism was observed between physiological concentrations of glucagon and vasopressin, where glucagon also facilitated the recruitment of hepatocytes into a Ca2+ wave. Hepatic glucose production was significantly higher with intralobular Ca2+ waves. We propose that inositol 1,4,5-trisphosphate (IP3 )-dependent Ca2+ signalling gives rise to an excitable medium across the functional syncytium of the hepatic lobule, co-ordinating and amplifying the metabolic responses to multiple hormonal inputs.
Keyphrases
  • protein kinase
  • oxidative stress
  • liver injury
  • skeletal muscle
  • type diabetes
  • blood glucose
  • adipose tissue
  • blood pressure
  • atomic force microscopy
  • single molecule
  • polycystic ovary syndrome
  • high resolution