A population-based phenome-wide association study of cardiac and aortic structure and function.
Wenjia BaiHideaki SuzukiJian HuangCatherine FrancisShuo WangGiacomo TarroniFlorian GuittonNay AungKenneth FungSteffen Erhard PetersenStefan K PiechnikStefan NeubauerEvangelos EvangelouAbbas DehghanDeclan P O'ReganMartin R WilkinsYike GuoPaul M MatthewsDaniel RuckertPublished in: Nature medicine (2020)
Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart-brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.
Keyphrases
- cardiovascular disease
- mental health
- cardiovascular risk factors
- high resolution
- left ventricular
- magnetic resonance
- machine learning
- aortic valve
- heart failure
- healthcare
- early life
- pulmonary artery
- metabolic syndrome
- coronary artery
- computed tomography
- aortic dissection
- optical coherence tomography
- mass spectrometry
- photodynamic therapy
- brain injury
- atrial fibrillation
- social media
- resting state
- artificial intelligence
- big data
- functional connectivity