Highly Dispersed NixGay Catalyst and La2O3 Promoter Supported by LDO Nanosheets for Dry Reforming of Methane: Synergetic Catalysis by Ni, Ga, and La2O3.
Fang ZengBo WeiDengpeng LanJianping GePublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
A highly active and stable Ni-based catalyst is the focal point for research on dry reforming of methane (DRM). Here, NixGay/La2O3-LDO catalysts composed of highly dispersed NixGay and La2O3 nanoparticles supported by the MgO/Al2O3 layered double oxide (LDO) nanosheets were synthesized by chemical methods. According to transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), CO2-TPD, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and thermal gravitational analysis (TGA), a synergistic reaction mechanism was proposed to explain the superior performance of the Ni0.8Ga0.2/La2O3-LDO catalyst. The NixGay alloy catalyst provides an effective way to balance the speed of CH4 cracking and CO2 disassociation, and the La2O3 promoter enriched the CO2 and ensured the generation of active O in time. They worked together to inhibit carbon accumulation and significantly improve the catalyst's activity and stability.
Keyphrases
- metal organic framework
- highly efficient
- reduced graphene oxide
- room temperature
- ionic liquid
- visible light
- carbon dioxide
- high resolution
- electron microscopy
- pet ct
- gold nanoparticles
- single molecule
- dna methylation
- transition metal
- gene expression
- transcription factor
- anaerobic digestion
- solid state
- computed tomography
- high grade