Login / Signup

A Compact-Sized Fully Self-Powered Wireless Flowmeter Based on Triboelectric Discharge.

Dong WanXin XiaHaoyu WangShaoshuai HeJiadan DongJinhong DaiDong GuanJunyu ZhengXiya YangYunlong Zi
Published in: Small methods (2024)
Flow sensing exhibits significant potential for monitoring, controlling, and optimizing processes in industries, resource management, and environmental protection. However, achieving wireless real-time and omnidirectional sensing of gas/liquid flow on a simple, self-contained device without external power support has remained a formidable challenge. In this study, a compact-sized, fully self-powered wireless sensing flowmeter (CSWF) is introduced with a small size diameter of down to less than 50 mm, which can transmit real-time and omnidirectional wireless signals, as driven by a rotating triboelectric nanogenerator (R-TENG). The R-TENG triggers the breakdown discharge of a gas discharge tube (GDT), which enables flow rate wireless sensing through emitted electromagnetic waves. Importantly, the performance of the CSWF is not affected by the R-TENG's varied output, while the transmission distance is greater than 10 m. Real-time wireless remote monitoring of wind speed and water flow rate is successfully demonstrated. This research introduces an approach to achieve a wireless, self-powered environmental monitoring system with a diverse range of potential applications, including prolonged meteorological observations, marine environment monitoring, early warning systems for natural disasters, and remote ecosystem monitoring.
Keyphrases
  • low cost
  • human health
  • risk assessment
  • ionic liquid