A single-molecule electrical approach for amino acid detection and chirality recognition.
Zihao LiuXingxing LiHiroshi MasaiXinyi HuangSusumu TsudaJun TeraoJinglong YangXuefeng GuoPublished in: Science advances (2021)
One of the ultimate goals of analytic chemistry is to efficiently discriminate between amino acids. Here we demonstrate this ability using a single-molecule electrical methodology based on molecular nanocircuits formed from stable graphene-molecule-graphene single-molecule junctions. These molecular junctions are fabricated by covalently bonding a molecular machine featuring a permethylated-β-cyclodextrin between a pair of graphene point contacts. Using pH to vary the type and charge of the amino acids, we find distinct multimodal current fluctuations originating from the different host-guest interactions, consistent with theoretical calculations. These conductance data produce characteristic dwell times and shuttling rates for each amino acid, and allow accurate, statistical real-time, in situ measurements. Testing four amino acids and their enantiomers shows the ability to distinguish between them within a few microseconds, thus paving a facile and precise way to amino acid identification and even single-molecule protein sequencing.
Keyphrases