How to generate and test hypotheses about colour: insights from half a century of guppy research.
Darrell J KempDavid N ReznickJeffrey ArendtCedric P van den BergJohn A EndlerPublished in: Proceedings. Biological sciences (2023)
Coloration facilitates evolutionary investigations in nature because the interaction between genotype, phenotype and environment is relatively accessible. In a landmark set of studies, Endler addressed this complexity by demonstrating that the evolution of male Trinidadian guppy coloration is shaped by the local balance between selection for mate attractiveness versus crypsis. This became a textbook paradigm for how antagonistic selective pressures may determine evolutionary trajectories in nature. However, recent studies have challenged the generality of this paradigm. Here, we respond to these challenges by reviewing five important yet underappreciated factors that contribute to colour pattern evolution: (i) among-population variation in female preference and correlated variation in male coloration, (ii) differences in how predators versus conspecifics view males, (iii) biased assessment of pigmentary versus structural coloration, (iv) the importance of accounting for multi-species predator communities, and (v) the importance of considering the multivariate genetic architecture and multivariate context of selection and how sexual selection encourages polymorphic divergence. We elaborate these issues using two challenging papers. Our purpose is not to criticize but to point out the potential pitfalls in colour research and to emphasize the depth of consideration necessary for testing evolutionary hypotheses using complex multi-trait phenotypes such as guppy colour patterns.