Login / Signup

Suppressing Halide Segregation in Wide-Band-Gap Mixed-Halide Perovskite Layers through Post-Hot Pressing.

Kwang ChoiMin Ju JeongSeungmin LeeGhaida AlosaimiJan SeidelJae Sung YunJun Hong Noh
Published in: ACS applied materials & interfaces (2022)
Mixed-halide perovskites (MHPs) have attracted attention as suitable wide-band-gap candidate materials for tandem applications owing to their facile band-gap tuning. However, when smaller bromide ions are incorporated into iodides to tune the band gap, photoinduced halide segregation occurs, which leads to voltage deficit and photoinstability. Here, we propose an original post-hot pressing (PHP) treatment that suppresses halide segregation in MHPs with a band gap of 2.0 eV. The PHP treatment reconstructs open-structured grain boundaries (GBs) as compact GBs through constrained grain growth in the in-plane direction, resulting in the inhibition of defect-mediated ion migration in GBs. The PHP-treated wide-band-gap (2.0 eV) MHP solar cells showed a high efficiency of over 11%, achieving an open-circuit voltage ( V oc ) of 1.35 V and improving the maintenance of the initial efficiency under the working condition at AM 1.5G. The results reveal that the management of GBs is necessary to secure the stability of wide-band-gap MHP devices in terms of halide segregation.
Keyphrases
  • solar cells
  • high efficiency
  • signaling pathway
  • gene expression
  • quantum dots
  • perovskite solar cells
  • gold nanoparticles
  • working memory
  • dna methylation
  • genome wide
  • combination therapy
  • room temperature
  • ionic liquid