Login / Signup

Boron-Catalyzed Polymerization of Phenyl-Substituted Allylic Arsonium Ylides toward Nonconjugated Emissive Materials from C3/C1 Monomeric Units.

Pibo LiuNikos Hadjichristidis
Published in: ACS macro letters (2021)
Two novel allylic arsonium ylide monomers with a phenyl (steric and electronic effect) group at different positions were synthesized and used in boron-catalyzed polymerization to produce a series of well-defined polymers, poly(2-phenyl-propenylene- co -2-phenyl-propenylidene) (P2-PhAY) and poly(3-phenyl-propenylene- co -3-phenyl-propenylidene) (P3-PhAY), with unusual structures but a controllable molecular weight and relatively low polydispersity. The backbone of these polymers consists of a mixture of C1 (chain grows by one carbon atom at a time) and C3 (chain grows by three carbon atoms at a time) monomeric units, as determined by 1 H, 13 C, and 1 H- 13 C HSQC 2D NMR. Based on the experimental results and density functional theoretical (DFT) calculations, we were able to propose a mechanism that takes into account not only the steric hindrance, but also the electron effect of the phenyl group. In addition, a nontraditional intrinsic luminescence was observed from the nonconjugated P2-PhAY and P3-PhAY; such unexpected emission is attributed to the formation of C3-unit clusters, as evidenced by ultraviolet-visible and fluorescence spectroscopy.
Keyphrases
  • high resolution
  • single molecule
  • magnetic resonance
  • density functional theory
  • molecular docking
  • quantum dots